74 research outputs found

    Caught you: threats to confidentiality due to the public release of large-scale genetic data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large-scale genetic data sets are frequently shared with other research groups and even released on the Internet to allow for secondary analysis. Study participants are usually not informed about such data sharing because data sets are assumed to be anonymous after stripping off personal identifiers.</p> <p>Discussion</p> <p>The assumption of anonymity of genetic data sets, however, is tenuous because genetic data are intrinsically self-identifying. Two types of re-identification are possible: the "Netflix" type and the "profiling" type. The "Netflix" type needs another small genetic data set, usually with less than 100 SNPs but including a personal identifier. This second data set might originate from another clinical examination, a study of leftover samples or forensic testing. When merged to the primary, unidentified set it will re-identify all samples of that individual.</p> <p>Even with no second data set at hand, a "profiling" strategy can be developed to extract as much information as possible from a sample collection. Starting with the identification of ethnic subgroups along with predictions of body characteristics and diseases, the asthma kids case as a real-life example is used to illustrate that approach.</p> <p>Summary</p> <p>Depending on the degree of supplemental information, there is a good chance that at least a few individuals can be identified from an anonymized data set. Any re-identification, however, may potentially harm study participants because it will release individual genetic disease risks to the public.</p

    Public Access to Genome-Wide Data: Five Views on Balancing Research with Privacy and Protection

    Get PDF
    Introductory paragraph: Just over twelve months ago, PLoS Genetics published a paper [1] demonstrating that, given genome-wide genotype data from an individual, it is, in principle, possible to ascertain whether that individual is a member of a larger group defined solely by aggregate genotype frequencies, such as a forensic sample or a cohort of participants in a genome-wide association study (GWAS). As a consequence, the National Institutes of Health (NIH) and Wellcome Trust agreed to shut down public access not just to individual genotype data but even to aggregate genotype frequency data from each study published using their funding. Reactions to this decision span the full breadth of opinion, from ‘‘too little, too late—the public trust has been breached’’ to ‘‘a heavy-handed bureaucratic response to a practically minimal risk that will unnecessarily inhibit scientific research.’’ Scientific concerns have also been raised over the conditions under which individual identity can truly be accurately determined from GWAS data. These concerns are addressed in two papers published in this month’s issue of PLoS Genetics [2,3]. We received several submissions on this topic and decided to assemble these viewpoints as a contribution to the debate and ask readers to contribute their thoughts through the PLoS online commentary features. Five viewpoints are included. The Public Population Project in Genomics (P3G) is calling for a universal researcher ID with an access permit mechanism for bona fide researchers. The contribution by Catherine Heeney, Naomi Hawkins, Jantina de Vries, Paula Boddington, and Jane Kaye of the University of Oxford Ethox Centre outlines some of the concerns over possible misuse of individual identification in conjunction with medical and family history data, and points out that if geneticists mishandle public trust, it will backfire on their ability to conduct further research. George Church posits that actions directed toward restricting data access are likely to exclude researchers who might provide the most novel insights into the data and instead makes the argument that full disclosure and consent to the release of genomic information should be sought from study participants, rather than making difficult-to-guarantee promises of anonymity. Martin Bobrow weighs the risks and benefits and proposes four steps that represent a middle ground: Retain restricted access for now, make malicious de-identification practices illegal, increase public awareness of the issues, and encourage recognition that scientists have a special professional relationship of trust with study participants. Finally, Bruce Weir provides a commentary on the contribution of the two research articles from Braun et al. [2] and Visscher and Hill [3]

    Routes for breaching and protecting genetic privacy

    Full text link
    We are entering the era of ubiquitous genetic information for research, clinical care, and personal curiosity. Sharing these datasets is vital for rapid progress in understanding the genetic basis of human diseases. However, one growing concern is the ability to protect the genetic privacy of the data originators. Here, we technically map threats to genetic privacy and discuss potential mitigation strategies for privacy-preserving dissemination of genetic data.Comment: Draft for comment

    Effects of robotic-assisted laparoscopic prostatectomy on surgical pathology specimens

    Get PDF
    Background Robotic-assisted laparoscopic prostatectomy (RALP) has greatly changed clinical management of prostate cancer. It is important for pathologists and urologists to compare RALP with conventional open radical retropubic prostatectomy (RRP), and evaluate their effects on surgical pathology specimens. Methods We retrospectively reviewed and statistically analyzed 262 consecutive RALP (n = 182) and RRP (n = 80) procedures performed in our institution from 2007 to 2010. From these, 49 RALP and 33 RRP cases were randomly selected for additional microscopic examination to analyze the degree of capsular incision and the amount of residual prostate surface adipose tissue. Results Positive surgical margins were present in 28.6% RALP and 57.5% RRP cases, a statistically significant difference. In patients with stage T2c tumors, which represent 61.2% RALP and 63.8% RRP patients, the positive surgical margin rate was 24.1% in the RALP group and 58.8% in the RRP group (statistically significant difference). For other pathologic stages, the differences in positive margins between RALP and RRP groups were not statistically significant. The incidence of positive surgical margins after RALP was related to higher tumor stage, higher Gleason score, higher tumor volume and lower prostate weight, but was not related to the surgeons performing the procedure. When compared with RRP, RALP also caused less severe prostatic capsular incision and maintained larger amounts of residual surface adipose tissue in prostatectomy specimens. Conclusions In this study RALP showed a statistically significant lower positive surgical margin rate than RRP. Analysis of capsular incision and amount of prostatic surface residual adipose tissue suggested that RALP caused less prostatic capsular damage than RRP

    Better governance, better access: practising responsible data sharing in the METADAC governance infrastructure.

    Get PDF
    BACKGROUND: Genomic and biosocial research data about individuals is rapidly proliferating, bringing the potential for novel opportunities for data integration and use. The scale, pace and novelty of these applications raise a number of urgent sociotechnical, ethical and legal questions, including optimal methods of data storage, management and access. Although the open science movement advocates unfettered access to research data, many of the UK's longitudinal cohort studies operate systems of managed data access, in which access is governed by legal and ethical agreements between stewards of research datasets and researchers wishing to make use of them. Amongst other things, these agreements aim to respect the reasonable expectations of the research participants who provided data and samples, as expressed in the consent process. Arguably, responsible data management and governance of data and sample use are foundational to the consent process in longitudinal studies and are an important source of trustworthiness in the eyes of those who contribute data to genomic and biosocial research. METHODS: This paper presents an ethnographic case study exploring the foundational principles of a governance infrastructure for Managing Ethico-social, Technical and Administrative issues in Data ACcess (METADAC), which are operationalised through a committee known as the METADAC Access Committee. METADAC governs access to phenotype, genotype and 'omic' data and samples from five UK longitudinal studies. FINDINGS: Using the example of METADAC, we argue that three key structural features are foundational for practising responsible data sharing: independence and transparency; interdisciplinarity; and participant-centric decision-making. We observe that the international research community is proactively working towards optimising the use of research data, integrating/linking these data with routine data generated by health and social care services and other administrative data services to improve the analysis, interpretation and utility of these data. The governance of these new complex data assemblages will require a range of expertise from across a number of domains and disciplines, including that of study participants. Human-mediated decision-making bodies will be central to ensuring achievable, reasoned and responsible decisions about the use of these data; the METADAC model described in this paper provides an example of how this could be realised

    Ethical implications of the use of whole genome methods in medical research

    Get PDF
    The use of genome-wide association studies (GWAS) in medical research and the increased ability to share data give a new twist to some of the perennial ethical issues associated with genomic research. GWAS create particular challenges because they produce fine, detailed, genotype information at high resolution, and the results of more focused studies can potentially be used to determine genetic variation for a wide range of conditions and traits. The information from a GWA scan is derived from DNA that is a powerful personal identifier, and can provide information not just on the individual, but also on the individual's relatives, related groups, and populations. Furthermore, it creates large amounts of individual-specific digital information that is easy to share across international borders. This paper provides an overview of some of the key ethical issues around GWAS: consent, feedback of results, privacy, and the governance of research. Many of the questions that lie ahead of us in terms of the next generation sequencing methods will have been foreshadowed by GWAS and the debates around ethical and policy issues that these have created

    Ethical and legal implications of whole genome and whole exome sequencing in African populations

    Get PDF
    BACKGROUND: Rapid advances in high throughput genomic technologies and next generation sequencing are making medical genomic research more readily accessible and affordable, including the sequencing of patient and control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards sequencing of numerous African samples for biomedical research. DISCUSSION: Funding agencies and journals often require submission of genomic data from research participants to databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues accompanying whole genome and exome research; and where an historical unidirectional flow of samples and data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and proposed. We investigated the following issues: (i) informed consent, including guidelines for performing culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of such concepts to research participants in resource limited settings. SUMMARY: We conclude that, in order to meet the unique requirements of performing next generation sequencing-related research in African populations, novel approaches to the informed consent process are required. This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent adheres to acceptable data protection levels with regard to use and transfer of such information
    • 

    corecore